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Abstract — Existing methods like Bayesian, Hamilton-Jacobi and Gaussian process are with limitations. A novel method with
modifications of treating uncertainty propagation through time as a stochastic optimal transport problem on evolving manifolds,
where the manifold structure itself is learned causally is developed named Novel Causal Manifold Schrodinger Bridge (NCMSB).
This method is synonymous with fluid mechanics and uses modified Schrodinger Bridge and Riemannian Manifolds. This is
applied as a cross-function to electricity market to deal the problem of negative pricing (NP) arising due to renewable energy
integration to the grid. NCMSB is used to mitigate the losses faced by electricity operators (EO) due to power generating
equipment shut-down and prepare the EO to plan accordingly for an unexpected situation, reduce loss and run the electricity
system with lesser stress that improves the life and loading-unloading cycle of the equipment.

Keywords — Negative pricing, Causal Interference, Schrodinger Bridge, Riemannian Manifolds, Electricity market,

Renewable energy.

l. INTRODUCTION

Renewable energy integration (RE) is the trending policy of
governments across the globe. Due to various advantages of
near zero pollution and climatic goals, governments opt for
this RE and this have created supply-demand imbalance in
unexpected conditions of poor demand in grid. This poor
grid demand has forced the base load stations to back-down
(reduce electricity generation) their power or in some cases,
shut-down of the units. This NP happens for a short- term
ranging from 3 to 6 hours in a day and this phenomenon is
becoming unpredictable. European market experienced 300
hours of NP in 2023 leading to losses in millions for EO.
Texas (ERCOT) experienced 156 hours in the same period.

Traditional methods fail to predict this NP phenomenon

as:

1. The time-varying causal
weather, demand and prices

2. Non-Euclidean geometry of market space spaces

3. The optimal transport of risk across time

The existing methods have limitations as they fail at

intersections of:

1. Bayesian curse of high-dimensional
quantification

2. Hamilton-Jacobi’s
reasoning

3. Gaussian process rigidity towards adaptive learning

4. All methods assume fixed causality

relationships  between

uncertainty

non-stationarity on temporal

Mathematical formulations:

With corrected formulation, defining a causal Stochastic
process:

The electricity market is defined as

P (price)
D, (demand)
R; (renewable generation)| _ _4

X = : = R
f S (storage levels)
C, (congestion metrics)
| W, (weather variables)

The market is getting evolved by the influences of:
Physical constraints (grid topology, generator capability)
Economic forces (market costs, bids)

Regulatory policies (must-run requirements, subsidies)
Weather patterns (solar irradiance, wind speed)

The next step:

Is developing a state evolution system by using Schrodinger
Bridge as the core problem is approached by an equation
that can treat uncertainty propagation through time as a
stochastic optimal transport problem on evolving
manifolds, where the manifold structure itself is learned
causally.

(L\’/ = fn(,)(.k’{.g,)df } (r,‘,(,](/\',.g{)duﬁ

Defining a causal stochastic process:

Where:
X; € B9 System state at time ¢

G,: Evolving causal graph (time-dependent DAG)
Soqny: Drift function with self-modifying parameters 6/(t)
o4¢): Diffusion function with adaptive uncertainty

W;: Wiener process

The original Schrodinger bridge:
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The classical Schrodinger Bridge problem finds the most likely path between two
probability distributions py and py given refarence dynamics, Formally:

inf KL(PIW)
o | [P

where ¥

The solution satisfies coupled forward-backward stochastic
differential equations (SDEs):
dX, = b(X,)dt + adW,
dY, = b(Y1)dt + adW,

V is Wiener measure and [1{ py, pr ) are measures with given marginals

(forward)
(backward)

with Xo ~ po, Yo ~ pr, and X; £ Y,.

Electrical markets do not operate in Euclidean space. Price
formation is a curved manifold where distant measures
“market similarity” than geometric distance. Riemannian
metric tensor is equipped, that can evolve with market
conditions

On manifold (M, G), Brownian motion becomes:

1
X, = 3G LX)V logdet G(X,)dt + /G (X,)dW,

The Fokker-Planck equation on manifold is:

Apy

. 1 "
—("—)—f— = v-(fll’l) t iv,V](LJp,)

where V, denotes covariant derivative and £ = o'*g7*.
Market variables exhibit time-varying causal relationships.
A directed acyclic graph (DAC) represents causal structure
at time t. The model is drifted as:
foy(Xe.6) = Y

16Pa,(G))

where Pa;(G;) are parents of node i in Gy,

The diffusion term incorporates causal influence
o) (X1n G) = diag(ei(t)) - G, CH(X)

The problem statement is to seek dynamics that
simultaneously respect manifold geometry, causal structure
and optimal transport principles. The SDE:

dX; = f(m)(XnGr)dt t ac.(,,(X,,g,)dl'i",

With the additional constraint that the path measure
minimizes:

KL(P[|We) + MR(G)) + AS(Gy)

where 'W; is Riemannian Wiener measure, R(G) enforces sparse causal structure,
and S(G) regularizes manifold curvature.

With time evolution od distribution the Fokker-Planck
equation becomes:
dpy

Bt = —-V; (fil)r)

Where:
V. is covariant derivative w.r.t. G

1 y
§V"v1 (ZUP')

Y = g'*g* (using Einstein summation)
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This is achieved by:
Start with Ito on manifold for test function ¢:
1 :
do(X,) = [ 00+ 32"V.V,o] dt + 8,0’ dWF
Taking expectation:

FEBC) =B [ 100+ 5299.0,4]

Integrating by parts (manifold version):
dp,
—dV = i(f'pe iVi(2Yp)| odV
[Fauw= [ [-urwgnmiea]

where dV = v/det GdX is volume element.

Since ¢ arbitrary, we get the PDE.

For metric tensor dynamics:
Using optimal transport theory, Wasserstein gradient flow
on manifold:

()p' - (,.7'-
ot =N (p’ L Y 5/;)

Where F p] is free energy functional.

For metric learning, minimizing:

Luersic = Ex—p, [[| X — Projpg, (X)|° + A - tr(G,; 'V log pi)]

Gradient flow:

4,
dt

Components derivation:

— - V(:'Euwlriv

Let M, be implicitly defined by h,(X) = 0, then:

GX) =, (X)) Th, (X) + el

where J, is Jacobian.
Learning t(¢) via:

du’! B N . n2
¥ = ~VE [IX ~ Projy,, (X)I7]

The causal graph evolution starts by score-based causal
discovery: From NOTEARS (Zheng et al., 2018):

Lensat(G) =E [ X — G - MLP(X)|[*] + MGl

subject to h(G) = tr(e¥“Y) — d = 0 (acyclicity).

For time-varying case:
Gi

dt
Using augmented Lagrangian for gradient derivation:

gh(gf + ah(G)

= Vg cc.’nu.’d(gl y Pt ) {- noise

Eaug = Ecmwd f

Gradient:
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vﬂr‘ﬁzmx - VV'EO\\L'-\J ' (Fh(g) 1 “)VG"(G)
Where:
Vgh(G) = 26 © 99

The parameter evolution is mentioned as Wasserstein flow,

since parameters are distributions than a point:
Let q;(@) be distribution over parameters. Optimal transport:

min Eg..,, [L(6)] +
G
Wasserstein gradient flow:

13 . KL(qr ”qpliur)

Oq, - [ : é}’
ot = Vo (q'v“ b'q)

where Flq] = Eg[L(0)] + BKL(q! Gpeior)-

the final equation becomes Causal Manifold Schrodinger
Bridge and is framed as:

% =-Vilf'o) + 3ViV(Z9p)

9 = —neVeEx-p [|I X — Projp, (X)|* + Ag - Ric(Gy)]

% — Vg [EIX - 6 ¥(X)]? + Ml|Gelh]
% = —mE |Gi(6;) ' Voll Xra1 = Xeaal®

dt

. '-'(mt;,un

Where the state dlstrlbutlon (Fokker-Planck on manifold):
= = ~Vi(fp) 4 V Vi(Ep)

Metric tensor (manifold learning):

iG
dG: neVeEx-a [IIX

it Proj (X)) + An-

R(G)]

where R(G,) is Ricci curvature regularization,

Causal graph (score-based dlscovery)

1G =
¢ i — 'h‘v" [_‘H .Y J\G, J ] 1 /\] |gf\ 1J

‘1’ -(hlgﬂ-())

Parameters (Wasserstein flow):

19 ) -
=2 = _ngEx-, [Gi(6) ' VoL(X;6,)]

For stability analysis:
Lyapunov function (Manifold Free Energy):

& = Ex-p[L(X)] + T - KL(p([|pes) + @+ tr(G, 'V log py)

~~
Performance Not-equilibrivm Manifold curvature

Theorem: If learning rates satisfy: 5

Allmx ( H )

NG NG, e <

where H is Hessian of &, then:

dg,

—t < K+ O(AY)

Computing time derivative along NCMSB trajectories:
d}‘, aF dp OF dG = OF d(] OF do

dt Opdt OG dt  OG dt ' 00 dt
Each term is negative definite under conditions, by:
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Fokker-Planck term: — E[|| V%% <0
Metric learning: — ||V Loersic /> < 0
Causal discovery: — || VgL ll* <0
Parameter update: || V,L||% , <0

AnddF:/dt < 0, with equality only at equilibrium.

Electricity market application:
NP occurs when:
P = MC;

t Congestion, + RenewablePenalty, < 0

Where is marginal cost, often negative for must-run plants
or when shutdown cost exceeds running losses.
The market model is defined as:
log Py
D}/ D5
]‘" If: apacity
StorageSoCy)
Congestion, "
Temperature]
WindSpeed;
LSolarIrradiance; |

X 'r -

Causal graph structure of learned
like:

identifies relationships

Temperature— demand Windspeed— renewable gen
Renewable gen— price Congestion— price

Market manifold metric captures:
Volatility clustering (GARCH
correlations

Time-of-day patterns Seasonality
NCMSB predicts NP probability as:

effects) Cross-zone

o | ——He8

F(Pa<0)=

Where:

Hisa ElPr. a1 X1, G, G

l],",_\ Var 1':_\ X..G.. G/ 9;-53"

Termgvnu (X) is the price component of inverse metric,
representing local uncertainty geometry.

(X,)  expl - AlVgI)

For optimal baseload plant i response with minimum stable
P :

N i Cr Ci
generation “ miu, Startup cost “'s, and shutdown cost™'d
Shutdown if=

t+1
/ max(—P;,0) - P, dr > C: + Cj + C},(G:, Gy)
¢

Where €. is manifold transition cost:
P = arg | Imiul {P- P, + 8- Distancec(P, Pjg,.) }

Where DistanceG is geodesic distance on operational
manifold. For generation portfolio with weights, NCMSB
solves:
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Subject to:

ZU, 4D{

u; € Us(G?)

G, is acyclic
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(demand satisfaction)

(manifold-feasible operations)

Data and implementation

(causal consistency)
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The NCMSB is implemented using PyTorch with the below
mentioned architecture: Manifold network= 4-layer MLP
with 256 hidden units, Swish activation

Causal network= Graph Neural Network with attention
mechanism Drift network= LSTM with 128 hidden states
Training= Adam optimizer, learner rate le-3, batch size 64
Data sources:

ERCOT=5-minute market data (2019~2014) CAISO=15-
minute data (202~2024) Weather=NOAA historical data
Fuel prices=EIA daily reports

The output of the program is simulated for 2026 NP forecast

Date Time Window [Expected Minimum|Duration Max  Renewable
Price Penetration Probability Confidence
2026- 10:30- - 4.25
03-15 14:45 $28.45/MWh hours 87.3% 92.7% 0.86
2026- 11:15- - 4.25
04-22 15:30 $32.10/MWh hours 91.2% 94.3% 0.88
2026- 10:45- - 2.50
05-06 13:15 $18.75/MWh hours 83.4% 78.9% 0.72
Max  Renewable
Date Time Window Expected Minimum|Duration Penetration Probability Confidence
Price

2026- 11:00- - 5.00
05-18 16:00 $45.20/MWh hours 94.5% 96.1% 0.92
2026- 10:30- - 3.50
06-03 14:00 $26.80/MWh hours 85.6% 85.2% 0.79
2026- 11:45- - 3.50
06-25 15:15 $31.25/MWh hours 89.8% 91.4% 0.85
2026- 10:15- - 2.25
07-12 12:30 $15.40/MWh hours 79.3% 73.5% 0.68
2026- 11:30- - 3.25
08-08 14:45 $22.90/MWh hours 84.7% 82.6% 0.77
2026- 10:00- - 3.25
09-19 13:15 $19.85/MWh hours 82.9% 81.3% 0.75
2026- 11:15- - 3.75
10-05 15:00 $38.75/MWh hours 92.3% 95.7% 0.90
2026- 10:45- - 3.50
11-11 14:15 $29.60/MWh hours 86.7% 87.9% 0.81
2026- 10:30- - 2.25
12-07 12:45 $16.90/MWh hours 81.5% 76.8% 0.70
In total 12 major events are predicted, a total of 36.5 hours
Hour-by-hour prediction for May 18, 2026 (Highest Risk  Location: ERCOT Texas
Day)
Date: 2026-05-18 (Sunday) - Spring shoulder season

Time Price($/MWh) Solar (MW) 'Wind (MW) Demand (MW) Negative

Probability

10:00 +12.45 8,450 4,230 42,300 0.23

10:30 3.20 9,120 -4,560 39,800 0.68

11:00 -18.75 10,230 4,890 38,450 0.92 v

11:30 -32.45 11,450 5,120 37,890 0.96 v

12:00 -45.20 12,780 5,340 36,780 0.99 v
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12:30 -41.80 13,250 5,560 35,670 0.98 v
13:00 -38.25 13,890 5,780 35,120 0.97 v
13:30 -32.10 14,230 5,890 35,450 0.95 v
14:00 -25.80 14,560 6,010 36,780 0.91 v
14:30 -18.45 14,890 6,120 38,450 0.83 v
15:00 -9.80 14,230 6,230 40,120 0.71
15:30 +2.45 13,450 6,340 42,340 0.34
16:00 +15.60 12,340 6,230 44,560 0.12

Peak negative=-$45.2/MWh at 12:00 (87% confidence)
Total loss without NCMSB=$2.34M for 1GW portfolio
NCMSB mitigation savings=$1.89M (81% savings)
Prediction for above mentioned date is based on:

Causal Factors:

- Day: Sunday (low demand: 38-42GW vs 45-50GW
weekday)

- Season: Spring shoulder (mild temps, moderate demand)
- Solar: Peak generation 14.9GW (vs 2023: 12.3GW)
+21%

- Wind: 6.1GW (vs 2023: 5.2GW) +17%

- Demand: 36-39GW (weekend pattern)

- Storage: Morning charge cycle completes by 10:00

- Weather: High pressure system, clear skies

- Market: Reduced imports due to maintenance

Manifold Position: [0.234, -0.567, 0.891, ...] — Negative
price region Probability: 96.1% (threshold: 87.5%)
Confidence: 0.92 (manifold distance: 0.346)

October 5, 2026 prediction date:

Causal Factors:

- Fall maintenance season

- Solar still strong, wind picks up

- Demand transition period

- Gas plant outages scheduled

- Historical pattern: 73% negative price probability in
similar conditions

Prediction Lead time comparison:

Model Lead Time (hours) Accuracy (%) Economic
Value($/MWh)

NCMSB 58+12 88.6% $3.45

LSTM Baseline 23108 81.2% $1.23

XGBoost 1.8+0.6 78.3% $0.98

ARIMA-GARCH 1.1+04 75.6% $0.67

Human Expert 05+0.3 68.9% $0.45

Prediction quality metrics:

Metric NCMSB LSTM XGBoost
Mean Absolute Error $8.45 $14.23 $16.78
Root Mean Square Error $12.34 $18.90 $21.45
Mean Absolute % Error 15.6% 24.3% 28.9%
Direction Accuracy 91.2% 78.9% 73.4%
Early Warning (hours) 5.8 2.3 18
Profit Capture (%) 81.3% 52.4% 43.2%
False Positive Rate 2.1% 8.7% 12.3%
Recall @ 80% Precision 87.6% 65.4% 58.9%

NCMSB identified causal relationships for 2026:
1. Solar — Price: § =-0.892 (p < 0.001)

2. Wind — Price:  =-0.834 (p < 0.001)

3. Demand — Price: p=+0.786 (p <0.001)

4. Storage — Price: B =+0.712 (p <0.001)

5. Gas — Price: B =+0.698 (p <0.001)

Baseline models missed:

- Solar-wind complementarity effect (p < 0.01)
- Time-of-day interaction with storage (p < 0.05)
- Weather front propagation patterns (p < 0.001)

2026 Market State Manifold Analysis:

- Manifold curvature: 1.89 (vs 1.23 in 2023) +53.7%
- Dimensionality reduction: 32 — 16 features

- Reconstruction error; 2.34% (vs 4.56% for PCA)
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- Geodesic distance preservation: 89.4%
- Out-of-distribution detection: AUC = 0.934

Key 2026 manifold shifts detected:
1. Solar saturation effect (non-linear beyond 80%
penetration)

2. Storage arbitrage pattern change (4-hour — 2-hour

cycles)
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3. Demand response elasticity increase (+34%)

Validation methodology for 2026 predictions:

Back testing 2019~2024 data:

Year Predicted Actual NCMSB LSTM Difference
accuracy accuracy
2019 8 7 87.5% 71.4% +16.1%
2020 6 5 83.3% 60% +23.3%
2021 9 8 88.9% 75% +13.9%
2022 7 6 85.7% 66.7% +19%
2023 10 9 90% 77.8% +12.2%
2024 11 10 90.9% 80% +10.9%
Average 87.7% 71.8% +15.9%
equations. Advances in Neural Information Processing
CONCLUSION Systems, 31.

The NCMSB is capable of predicting NP with up to 96%
and one such example of prediction is shown on May 18,
2026 from 11:00~16:00 hrs CST, ERCOT electricity prices
will reach -

$45.2/MWh due to 94.5% renewable electricity penetration.

This superiority over other methods creates more
economical values than its competitors as this model
provides efficient solution to complex market dynamics
through manifold learning and causal discovery,
outperforming traditional baselines by significant margins.
With success in NP prediction NCMSB has potential real-
world application in fields of Oil & Gas (LNG shipping
optimization, crude price prediction), insurance &
reinsurance (causal anomaly detection, claims prediction),
aviation industry (flight delay prediction, fuel hedging) in
addition to NP.
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