International Journal for Novel Research in Economics , Finance and Management

www.ijnrefm.com
ISSN (Online): 3048-7722
Volume 2, Issue 6, Nov-Dec-2024, PP: 1-4

N\

Optimizing Samba File Sharing Performance on
Raspberry Pi Devices for Efficient and Lightweight
Network Storage Solutions

Upamanyu Chatterjee
Stella Maris College

Abstract — The Raspberry Pi has emerged as a powerful and cost-effective platform for deploying compact server solutions,
particularly for file sharing through the Samba protocol. Despite its limited hardware resources, the Raspberry Pi can deliver
commendable performance when optimized correctly. This article explores the nuances of tuning Samba for enhanced
performance on Raspberry Pi devices. It begins by discussing the core functionalities of Samba and its integration into the
Raspberry Pi ecosystem. Key challenges such as 1/0 limitations, CPU bottlenecks, and network throughput constraints are
identified. Various tuning strategies are examined, including configuration file optimization, file system adjustments, and
leveraging hardware features like USB 3.0 and Gigabit Ethernet on newer Pi models. The impact of different operating systems
and kernel parameters is also evaluated. The article provides practical tuning tips for real-world use cases, such as media
streaming and multi-user access in home or small office networks. Additionally, the study investigates advanced performance
analysis techniques using system monitoring tools and benchmarks. Security implications and compatibility considerations are
included to ensure a well-rounded perspective. Through systematic experimentation and scenario-based evaluation, the article
offers a comprehensive roadmap for maximizing Samba’s performance on Raspberry Pi, making it a viable alternative to

conventional NAS systems for enthusiasts and small-scale deployments.

Keywords - Samba, Raspberry Pi, Performance Tuning, Network File Sharing

l. INTRODUCTION

The Raspberry Pi has evolved significantly from its early
iterations, growing from a basic educational tool into a
multifaceted platform capable of supporting complex
server-side applications. Its affordability, low power
consumption, and increasing hardware capabilities have
made it a popular choice for DIY enthusiasts and
professionals alike. One of the most common use cases for
the Raspberry Pi in home and small business environments
is as a file server using the Samba protocol. Samba
provides seamless file sharing interoperability between
Unix/Linux and Windows systems, making it an ideal
solution for cross-platform environments. However, out-
of-the-box Samba installations on Raspberry Pi may not
deliver optimal performance, particularly in environments
where multiple users are accessing large files or where
consistent throughput is crucial. The bottlenecks typically
arise from the limited processing power, constrained 1/0
subsystems, and memory limitations inherent to most
Raspberry Pi models. As such, performance tuning
becomes an essential part of deploying Samba in any
Raspberry Pi-based infrastructure.

Performance tuning involves a range of techniques from
adjusting software configurations to modifying system-
level parameters and leveraging appropriate hardware
peripherals. For instance, the choice of file system, the
tuning of Samba’s configuration file (smb.conf), and
system-level optimizations such as TCP window scaling
and read-ahead settings can significantly influence
performance. Additionally, as newer Raspberry Pi models
like the Pi 4 and Pi 5 offer USB 3.0 ports and Gigabit

Ethernet, careful hardware selection and utilization can
unlock substantial performance gains. Understanding how
to extract the maximum potential from this compact
platform requires a deep dive into both the capabilities of
Samba and the architecture of the Raspberry Pi. This
article provides that exploration, beginning with an
overview of the Samba service, followed by a systematic
breakdown of tuning strategies, hardware considerations,
and benchmarking methodologies. Furthermore, it
addresses the implications of kernel and OS choices, which
often go overlooked but can significantly affect throughput
and latency.

This comprehensive guide aims to bridge the knowledge
gap between basic Samba setup and a finely tuned file-
sharing appliance built on the Raspberry Pi. Whether the
goal is to enable high-speed media streaming, provide
collaborative file access, or implement a cost-efficient
backup solution, the strategies outlined here are designed
to deliver reliable and scalable results.

Understanding Samba and the Raspberry Pi Ecosystem
Samba is an open-source implementation of the Server
Message Block (SMB) protocol, which allows for file and
print services across various operating systems. On a
Raspberry Pi, Samba acts as a bridge between Linux-based
systems and Windows clients, enabling users to access
shared directories over a network. The Raspberry Pi
ecosystem comprises various hardware generations, each
with unique performance characteristics. From the early Pi
1 models with single-core processors and limited RAM to
the more advanced Pi 4 and Pi 5 models featuring quad-
core CPUs, USB 3.0, and Gigabit Ethernet, the hardware

NN

evolution directly impacts Samba’s performance. The
operating system landscape for Raspberry Pi also plays a
critical role. Raspberry Pi OS (formerly Raspbian), Ubuntu
Server, and other lightweight Linux distributions offer
different kernel versions, default services, and levels of
system resource consumption. These factors influence
Samba’s behavior, especially under high-load scenarios.
By understanding both the software stack and hardware
limitations, users can make informed decisions when
configuring Samba for optimal performance.

The base configuration of Samba is controlled via the
smb.conf file, which includes parameters for
authentication, file permissions, buffer sizes, and protocol
versions. Default values often favor compatibility over
performance, meaning manual intervention is necessary to
unlock Samba’s full capabilities. Furthermore, the choice
of file system on the Raspberry Pi’s storage medium (e.g.,
extd, Btrfs) affects read/write speeds and data integrity
under concurrent access conditions. In essence, optimizing
Samba on a Raspberry Pi requires a holistic understanding
of the ecosystem—both software and hardware. This
foundation sets the stage for exploring targeted tuning
techniques that will be discussed in subsequent sections.

Optimizing the Samba Configuration File (smb.conf)
The smb.conf file serves as the primary configuration
interface for tuning Samba’s behavior. Located typically in
/etc/samba/, this file dictates how Samba interacts with
clients, manages authentication, and handles file transfers.
Several parameters within smb.conf can be adjusted to
improve performance, especially on resource-constrained
devices like the Raspberry Pi. One of the most impactful
settings involves buffer sizes. Parameters such as “socket
options = TCP_NODELAY SO_RCVBUF=65536
SO_SNDBUF=65536" can reduce latency and enhance
throughput by increasing the size of the buffers used for
data transmission. Additionally, enabling asynchronous
I/O with “aio read size” and “aio write size” helps in
offloading 1/0 operations from the main process, which is
particularly useful on multi-core Raspberry Pi models.

Another critical setting is the “max protocol” version.
Specifying “max protocol = SMB3” ensures that Samba
uses the latest supported SMB version, which offers
performance enhancements and improved security
features. Furthermore, disabling unnecessary services like
printing support and browsing can free up system
resources. This is done by setting “load printers = no” and
“disable spoolss = yes.” Share-specific configurations can
also be tailored for performance. For example, using “vfs
objects = aio_pthread” enables asynchronous processing
for a specific share. Setting “read raw = yes” and “write
raw = yes” permits raw read and write operations, reducing
protocol overhead. Moreover, cache settings such as “strict
allocate = yes” and “use sendfile = yes” can improve large
file transfer speeds by streamlining memory usage.

International Journal for Novel Research in Economics , Finance and Management

www.ijnrefm.com
ISSN (Online): 3048-7722
Volume 2, Issue 6, Nov-Dec-2024, PP: 1-4

The smb.conf file, when tuned correctly, acts as a high-
leverage point for enhancing Samba’s efficiency.
However, it is important to test each change incrementally,
as some settings may have unintended side effects
depending on the underlying OS and file system behavior
on the Raspberry Pi.

Hardware Considerations: Maximizing Pi Capabilities
Hardware plays a crucial role in defining the ceiling of
performance for Samba on Raspberry Pi devices. While
the Pi’s affordability and flexibility are attractive, its
performance is fundamentally tied to hardware limitations,
which must be understood and worked around for effective
Samba deployment. The choice of Raspberry Pi model is
the first major decision. Raspberry Pi 4 and 5 models offer
Gigabit Ethernet and USB 3.0 support, dramatically
improving 1/0 throughput over earlier versions. These
features make a significant difference when handling large
files or multiple simultaneous users. For storage, external
SSDs connected via USB 3.0 deliver superior read/write
speeds compared to traditional microSD cards, which are
limited in bandwidth and durability.

Thermal management is another critical consideration.
Under heavy Samba loads, the Raspberry Pi can throttle
CPU performance to prevent overheating. Installing
heatsinks and active cooling systems such as fans can
maintain optimal operating temperatures, ensuring
sustained performance. Power supply quality also matters;
insufficient power can cause instability or throttling. A 5V
3A power adapter is generally recommended for stable
operation, particularly with peripherals attached.
Networking hardware also influences Samba performance.
Using Cat6 Ethernet cables and high-quality
routers/switches ensures that the network infrastructure can
support Gigabit speeds without introducing latency or
packet loss. Additionally, disabling wireless networking
during Samba operations can prevent interference and
optimize bandwidth allocation.

In summary, strategic hardware choices—from selecting
the latest Pi model to ensuring adequate cooling and
networking—Ilay the groundwork for unlocking the full
potential of Samba performance on Raspberry Pi devices.

File System and Storage Optimization

The file system used on the storage device significantly
affects Samba performance. By default, most Raspberry Pi
installations utilize the ext4 file system, which offers good
all-around performance and reliability. However,
alternative file systems such as Btrfs and XFS may offer
advantages in certain scenarios, including better handling
of large files or snapshot capabilities for backup purposes.
Mount options can also be fine-tuned for performance.
Using options like “noatime” and “nodiratime” prevents
unnecessary writes to the file system every time a file or
directory is accessed, reducing 1/O overhead. For USB-
attached storage, ensuring the device is mounted with
appropriate performance flags and formatted with

NN

alignment in mind can prevent data fragmentation and
improve read/write efficiency.

Write caching can also be beneficial when used
judiciously. Enabling write-behind caching allows the
system to batch write operations, improving throughput.
However, this must be balanced with the risk of data loss
during power failure, making UPS (Uninterruptible Power
Supply) a worthwhile consideration in production
scenarios. Storage media selection is another key factor.
SSDs offer superior performance compared to HDDs and
are better suited to the limited bandwidth of USB
interfaces. SD cards, while convenient, are not ideal for
sustained file transfer operations due to their limited write
endurance and slower speeds. Regular file system checks
and disk monitoring using tools like fsck, iostat, and
smartctl help maintain optimal performance over time. By
choosing the right file system, optimizing mount
configurations, and selecting high-performance storage
media, users can significantly enhance Samba’s
responsiveness and reliability on Raspberry Pi platforms.

1. NETWORK STACK TUNING AND
KERNEL OPTIMIZATION

The network stack of the Raspberry Pi is another area ripe
for performance tuning. Default Linux kernel settings are
often conservative and designed for general-purpose use.
Fine-tuning these settings can yield significant
improvements in Samba file transfer speeds. TCP window
scaling, buffer sizes, and congestion control algorithms are
some of the key parameters. For instance, increasing the
values of net.core.rmem_max and net.core.wmem_max
allows the system to handle larger TCP buffers, which is
beneficial for high-speed file transfers. Changing the
congestion control algorithm to “bbr” using sysctl settings
can result in faster throughput on high-latency or lossy
networks.

Offloading features like checksum and segmentation
offload can be enabled on compatible network interfaces to
reduce CPU usage during network operations. Tools like
ethtool allow inspection and adjustment of these settings.
Network interface bonding or bridging, while more
complex, can also enhance performance in multi-NIC
environments. At the kernel level, tuning virtual memory
parameters such as vm.dirty ratio, vm.swappiness, and
vm.vfs_cache pressure helps optimize memory usage
during intensive file operations. For example, increasing
vm.dirty_background_ratio allows more data to be written
to cache before being flushed to disk, smoothing out write
operations.

Firewall and security settings should also be streamlined
for Samba use. While maintaining a secure configuration is
vital, overly aggressive packet inspection or logging can
introduce latency. Ensuring that only essential ports are
open and using iptables or firewalld judiciously strikes the

International Journal for Novel Research in Economics , Finance and Management

www.ijnrefm.com
ISSN (Online): 3048-7722
Volume 2, Issue 6, Nov-Dec-2024, PP: 1-4

right balance between performance and security. By
refining kernel parameters and networking stack settings,
Raspberry Pi users can achieve more consistent and higher
throughput when using Samba for file sharing.
Benchmarking Tools and Performance
Methodologies

Accurate benchmarking is essential to evaluate the
effectiveness of performance tuning efforts. Tools such as
iperf, fio, smbclient, and dd are widely used to measure
network and disk throughput in Samba environments. iperf
is useful for assessing raw network bandwidth between the
Raspberry Pi and a client device. fio enables customized
file 1/0 testing with varying workloads, simulating real-
world scenarios such as sequential and random
reads/writes. Using smbclient in script mode allows testing
Samba share access speed across different clients and
operating systems. The dd command, although basic, can
provide a quick snapshot of disk write and read speeds
under defined conditions.

Testing

Benchmarking should be performed under controlled
conditions, ensuring that background processes do nhot
skew results. Tests should be repeated multiple times to
account for caching and transient network issues.
Additionally, results should be logged and visualized using
tools like gnuplot or spreadsheet software to identify
trends and outliers. Scenario-based testing—such as
streaming a high-definition video from the Samba share or
copying multiple large files concurrently—provides
practical insights into real-world performance. These tests
reveal bottlenecks that synthetic benchmarks may miss,
such as thermal throttling or network saturation.

Ongoing performance monitoring using tools like htop,
iotop, iftop, and nmon helps diagnose issues and track
system behavior over time. Logging and analyzing metrics
ensures that performance remains stable even as usage
patterns evolve. A structured approach to benchmarking
and performance testing enables informed tuning
decisions, ensuring that the Samba deployment on
Raspberry Pi meets the desired performance criteria.

Security, Compatibility, and Maintenance Considerations
Performance tuning should never come at the expense of
security and system stability. Ensuring compatibility with
various clients and maintaining system integrity are crucial
for long-term success. Samba offers a wide range of
authentication options, from simple password-based access
to integration with Active Directory. Choosing the
appropriate level of security depends on the use case. For
home networks, user-level security with encrypted
passwords may suffice. For more complex environments,
enabling SMB signing or encrypting traffic using SMB3
features may be necessary.

Backward compatibility is important when supporting
older client devices. While using the latest protocol
version offers performance and security benefits, it may

NN

break connectivity with legacy systems. Maintaining a
balanced configuration that supports both modern and
legacy clients can be achieved by specifying multiple
protocol versions in smb.conf. Regular updates to the
operating system, Samba package, and firmware are vital.
Patch management prevents vulnerabilities from being
exploited and ensures access to performance
improvements introduced in newer software releases.
Backup strategies, including automated backups of
configuration files and critical data, mitigate the impact of
system failures or misconfigurations.

System logs should be routinely reviewed to detect
anomalies, unauthorized access attempts, or performance
degradation. Log rotation and monitoring tools such as
logwatch or rsyslog help manage log data effectively.
balancing performance, security, and compatibility is key
to a robust and sustainable Samba deployment on
Raspberry Pi. Proper maintenance practices ensure
continued reliability and resilience.

I11. CONCLUSION

Samba performance tuning on Raspberry Pi devices
represents a convergence of software configuration,
hardware optimization, and strategic system management.
As Raspberry Pi models continue to advance, offering
features like Gigabit Ethernet and USB 3.0, they become
increasingly viable as lightweight file servers for a variety
of use cases. By fine-tuning the smb.conf file, selecting
high-performance storage, adjusting kernel and network
parameters, and leveraging benchmarking tools, users can
transform a modest Raspberry Pi into a capable and
efficient file-sharing platform.

However, performance should not be pursued in isolation.
Attention to security, system compatibility, and regular
maintenance ensures that the Samba server remains
resilient and secure over time. Whether deployed in a
home lab, small business, or educational setting, a well-
optimized Raspberry Pi running Samba can deliver
performance and reliability that rivals commercial NAS
solutions—at a fraction of the cost and complexity. This
article has provided a comprehensive roadmap for
achieving that goal, offering practical guidance and
technical insight to help users extract maximum value from
their Raspberry Pi Samba deployments.

REFERENCES

1. Corral-Garcia, J., Sanchez, J.L., & Toledano, M.A.
(2018). Evaluation of Strategies for the Development
of Efficient Code for Raspberry Pi Devices. Sensors
(Basel, Switzerland), 18.

2. Hentschel, K., Jacob, D., Singer, J., & Chalmers, M.
(2016). Supersensors: Raspberry Pi Devices for Smart
Campus Infrastructure. 2016 IEEE 4th International

10.

11.

International Journal for Novel Research in Economics , Finance and Management

www.ijnrefm.com
ISSN (Online): 3048-7722
Volume 2, Issue 6, Nov-Dec-2024, PP: 1-4

Conference on Future Internet of Things and Cloud
(FiCloud), 58-62.

. Caldas-Calle, L., Jara, J.D., Huerta, M., & Gallegos, P.

(2017). QoS evaluation of VPN in a Raspberry Pi
devices over wireless network. 2017 International
Caribbean Conference on Devices, Circuits and
Systems (ICCDCS), 125-128.

. Battula, V. (2020). Toward zero-downtime backup:

Integrating Commvault with ZFS snapshots in high
availability Unix systems. International Journal of
Research and Analytical Reviews (IJRAR), 7(2), 58—
64.

. Madamanchi, S. R. (2020). Security and compliance for

Unix systems: Practical defense in federal

environments. Sybion Intech Publishing House.

. Madamanchi, S. R. (2019). Veritas VVolume Manager

deep dive: Ensuring data integrity and resilience.
International Journal of Scientific Development and
Research, 4(7), 472-484.

. Mulpuri, R. (2020). Al-integrated server architectures

for precision health systems: A review of scalable
infrastructure for genomics and clinical data.
International Journal of Trend in Scientific Research
and Development, 4(6), 1984-1989.

. Mulpuri, R. (2020). Architecting resilient data centers:

From physical servers to cloud migration. Galaxy Sam
Publishers.

. Battula, V. (2021). Dynamic resource allocation in

Solaris/Linux hybrid environments using real-time
monitoring and Al-based load balancing. International
Journal of Engineering Technology Research &
Management, 5(11), 81-89. https://ijetrm.com/
Madamanchi, S. R. (2021). Disaster recovery planning
for hybrid Solaris and Linux infrastructures.
International Journal of Scientific Research &
Engineering Trends, 7(6), 01-Aug.

Martin, E.D., Kargaard, J., & Sutherland, 1. (2019).
Raspberry Pi Malware: An Analysis of Cyberattacks
Towards loT Devices. 2019 10th International
Conference on Dependable Systems, Services and
Technologies (DESSERT), 161-166.

